
15. 01. 2026, 06.10 1/4 Callbacky – zpětná volání

GMLWiki - http://wiki.gml.cz/

Callbacky – zpětná volání

V následující ukázce si vysvětlíme co jsou to tzv. callbacky a také jak s nimi pracovat. Využívají se
jako méně náročná, a také přesnější možnost pro vyvolání zadané akce v určitý moment (například po
té, co dojde cyklus ke konci). Práci s callbacky si ukážeme na projektu počítající prvočísla metodou
Eratosthenových sít.

Co to je callback?

Jedná se o spustitelný kód, který je následně předán do jiného kódu, který má za úkol vykonat předem
určenou činnost ve vhodný čas. V ukázce bude vhodným časem například určení dalšího prvočísla.

Tvorba projektu

Pro začátek si budeme muset vytvořit 3 třídy:

Callback – Do této třídy umístíme samotný základ callbacku. Musíme do něj však předat1.
informace z třídy Eratosthen.
Eratosthen.java – Zde se bude nacházet jádro projektu. Budou zde vytvořeny callbacky jako2.
takové a zároveň dojde k vytvoření kódu pro Eratosthenova síta za pomoci kontejnerů. Tato
třída bude muset být spustitelná, proto bude implementovat Runnable.
MainWindow – Zde budeme mít okno aplikace, ve kterém nalezneme možnost zadání čísla, po3.
které bude určování prvočísel probíhat a samozřejmě jejich samotný výpis. Bude se tedy jednat
o jFrame, který bude implementovat třídu Callback, abychom mohli přeměnit MainWindow na
callback.

Callback

Práce zde bude velice jednoduchá. Je třeba pouze vytvořit interface, který přebere informace z třídy
Eratosthen.

Kód:

 public interface Callback {
 public void reactToCall(Eratosthen er);
 }

Eratosthen

V následující třídě budeme muset zaprvé vytvořit privátní proměnné Callback a následně jim vytvořit
metody.

Kód:

Last update: 22. 06. 2015, 20.47 objprg:jazykjava:callback http://wiki.gml.cz/objprg:jazykjava:callback

http://wiki.gml.cz/ Printed on 15. 01. 2026, 06.10

 private Callback finalCall;
 private Callback newPrimeCall;
 private Callback changeCall;
 //Metodu addFinalCallback budeme využívat pro výpis finálních čísel.
 public void addFinalCallback(Callback finalCall) {
 this.finalCall=finalCall;
 }
 //Pomocí metody addNewPrimeCallback se dozvíme, že byl dosažen konec
programu.
 public void addNewPrimeCallback(Callback newPrimeCall) {
 this.newPrimeCall=newPrimeCall;
 }
 //Metoda addChangeCallback nás bude informovat o všech změnách v seznamu.
 public void addChangeCallback(Callback changeCall) {
 this.changeCall=changeCall;
 }

Momentálně sice máme už základ callbacků a víme, kdy by se měly aktivovat, avšak program toto
zatím neví, proto musí být doplněn o samotné výpočetní jádro. Abychom jej mohli vytvořit, budeme
potřebovat kontejnery tvořené celými čísly. První z nich naplníme čísly od 2 do max (kde max je
hodnota zadaná uživatelem skrz input v MainWindow). Do druhého budeme postupně přidávat
samotná prvočísla, respektive bude zatím prázdný.

Kód:

 private SortedSet<Integer> primeNumberList = new TreeSet();
 private SortedSet<Integer> numbersList = new TreeSet();
 public SortedSet<Integer> getPrimes() {
 return this.primeNumberList;
 }
 public SortedSet<Integer> getNumbers() {
 return this.numbersList;
 }
 private void fillNumbers() {
 for(int i = 2; i <= this.max; i++) {
 numbersList.add(i);
 }
 }

Následně se přesuneme k samotné výpočetní logice. Podle Eratosthenových sít budeme tedy
postupně testovat všechna čísla v prvním seznamu na prvočísla pomocí násobení již známými (a do
druhého kontejneru přesunutými) prvočísly. Důležité je při nalezení nového prvočísla / změně v listu /
ukončení výpočtu informovat přiřazený callback pomocí zavolání metody reactToCall.

Kód:

 public void countPrimes() {
 this.fillNumbers();
 while(numbersList.size()>0) {
 Integer prime = numbersList.first();
 numbersList.remove(prime);

15. 01. 2026, 06.10 3/4 Callbacky – zpětná volání

GMLWiki - http://wiki.gml.cz/

 primeNumberList.add(prime);
 if (newPrimeCall!=null) newPrimeCall.reactToCall(this);
 try {
 Thread.sleep(100);
 } catch (InterruptedException ex) {
 }
 Iterator<Integer> it = numbersList.iterator();
 while(it.hasNext()) {
 try {
 Thread.sleep(100);
 } catch (InterruptedException ex) {
 }
 Integer number = it.next();
 if (number%prime==0) {
 it.remove();
 if (changeCall!=null) changeCall.reactToCall(this);
 }
 }
 }
 if (finalCall!=null) finalCall.reactToCall(this);
 }

Bystřejší si možná položili otázku, proč jsou v kódu pokusy o pozastavení vlákna. Odpověď se
jednoduchá – k ničemu. Pozastavení vláken zde slouží pouze pro uživatele, aby měl dostatek času se
podívat na práci programu a výpis prvočísel.

Celou třídu zakončíme vyvoláním metody run, která spustí výpočet prvočísel.

Kód:

 public void run() {
 countPrimes();
 }

MainWindow

Zde vytvoříme již zmíněné hlavní a viditelné okno programu. bude obsahovat v zásadě 4 objekty:

jButton – Při kliknutí na něj se celý výpočet spustí.1.
jTextField (zde pojmenován jako jMax) – Zde bude mít uživatel možnost zadat již zmíněný input,2.
oznamující programu poslední kontrolované číslo.
jLabel1 – Bude vypisovat všechna dosud nalezená prvočísla.3.
jLabel2 – Zde bude naopak vypsán kontejner obsahující řadu kontrolovaných čísel. Jak se jeho4.
obsah bude zmenšovat, budou ubývat vyřazená čísla i zde.

Nezapomeňme také, že je třeba, aby celý jFrame implementoval rozhraní Callback. Dále bude třeba
vytvořit metodu reactToCall, která bude okopírována ze třídy Eratosthen a bude zapisovat data do
zmíněních jLabelů.

Kód:

Last update: 22. 06. 2015, 20.47 objprg:jazykjava:callback http://wiki.gml.cz/objprg:jazykjava:callback

http://wiki.gml.cz/ Printed on 15. 01. 2026, 06.10

 public void reactToCall(Eratosthen er) {
 jLabel1.setText(er.getPrimes().toString());
 jLabel2.setText(er.getNumbers().toString());
 }

Posledním krokem v celém projektu je vytvoření kódu, který se spustí při akci vykonané na jButton.
Kód bude muset obsahovat okopírování kódu ze třídy Eratosthen a následné vytvoření callbacků na
základě získaných dat z třídy Eratosthen. Aby bylo vše naprosto perfektní, vytvoříme i nové vlákno,
které umožní výpisům do jLabelů paralelní běh.

Kód:

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
 Eratosthen er = new Eratosthen(Integer.parseInt(jMax.getText()));
 er.addFinalCallback(this);
 er.addNewPrimeCallback(this);
 er.addChangeCallback(this);
 Thread th = new Thread(er);
 th.start();
 }

From:
http://wiki.gml.cz/ - GMLWiki

Permanent link:
http://wiki.gml.cz/objprg:jazykjava:callback

Last update: 22. 06. 2015, 20.47

http://wiki.gml.cz/
http://wiki.gml.cz/objprg:jazykjava:callback

	Callbacky – zpětná volání
	Co to je callback?
	Tvorba projektu
	Callback
	Eratosthen
	MainWindow

