20. 01. 2026, 16.54 1/6 Tid&ni/Razeni a vyhledévaci algoritmy

Tridéni/Razeni a vyhledavaci algoritmy

Tridéni vs razeni
Tridéni je usporadani objektd podle podobnych viastnosti. Zplsob tfidéni je vzdy zavisly na oboru,
ktery s témito objekty pracuje.

Razeni je zplisob uspofadani objektl do specifikovaného pofadi. Razeni mliZze byt provozovéno podle
rlznych kritérii (abecedné, vzestupné, sestupné).

Tyto dva pojmy byvaji Casto zaménovany.

Slozitost algoritmu

Slozitost algoritm{ (nékdy taky asymptoticka slozitost) je funkce, kterad vyjadruje pocet elementarnich
krok{ v zavislosti na vstupnich datech dané funkce. Znaci se O.

i o . el " a . p __-'.Iill.__-'inlll__.d'_r__.d'_nlll
Moznosti thid slozitosti: 1 << l0g(n) < n < nlog(n) < n" < k" < nl<n

Rozdil mezi jednotlivymi tfidami slozitosti se da jednoduSe pochopit na téchto dvou prikladech. Kdyz
mame prvni algoritmus se slozitosti O(n) a druhy algoritmus se sloZitosti O(2n) staci nam ten druhy
spustit na dvakrat rychlejsim stroji a rozdil je smazan. Pokud vSak mame prvni algoritmus se slozitosti
0(n) a algoritmus se slozitosti O(n*) bude pfi rlizné velikosti stoupat ndro¢nost v zavislosti na n 10x,
20x,...

Tridici algoritmy
Bubble sort

Princip:

1. Dostanu zadané pole.
2. Prochazim pole, pokud je prvek vlevo mensi nez prvek vpravo prohodim je
3. Opakuji dokud neni pole sefazeno od nejvétsiho po nejmensi (zprava doleva)

Slozitost: O(n’) - za kazdy prvek pole projdu pole dvakréat

Ukazka algoritmu:

bubbleSort(array

i i array. length i
j j array.length i;]
array/j array/j

tmp = array!]j

GMLWiki - http://wiki.gml.cz/

http://wiki.gml.cz/_detail/informatika:maturita:22_slozitost_algoritmu.png?id=informatika%3Amaturita%3A22a

Last update: 24. 04. 2015, 15.37 informatika:maturita:22a http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

array/j array/j
array!j tmp

<html>

<script> function test() {
var x = [2, 5, 1, 7, 81;
bubbleSort(x);

}

function bubbleSort(array) {

for (var i = 0; i < array.length - 1; i++) {
for (var j = 0; j < array.length - 1 - i; j++) {
printStep(array, step++);
if (array[j] < array[j + 1]) {
var tmp = arrayl[jl;
array[j] = array[j + 1];
array[j + 1] = tmp;

}

function printStep(array, step) {

var container = document.getElementById("containerbubble");
container.innerHTML += "Krok " + step + ": "
for (var index = 0; index < array.length; index++) {

container.innerHTML += array[index] + " ";
}
container.innerHTML += "
";
}
</script>

<div id="containerbubble">
</div>
<script src="bubblesort.js"></script>

<button onclick="test()">Spust mé!</button>

http://wiki.gml.cz/ Printed on 20. 01. 2026, 16.54

20. 01. 2026, 16.54 3/6 Tid&ni/Razeni a vyhledévaci algoritmy

</html>

Insert sort

Princip:
1. Dostanu pole
2. Prochdzim pole zleva doprava a vzdy kazdy prvek zafadim na misto podle velikosti
3. Dostavam pole sefazené zleva doprava od nejvétsiho po nejmensi

Slozitost: SloZitost je O(n?), ale pfi téméf sefazeném poli se blizi O(n)

Ukazka algoritmu:

insertSort(array

stepCounter
i i array. length i
j i
tmp array/ j
while (] tmp array/j
array/j array/j
]

array!j tmp

<html> <script> function testinsert() {
var x = [1, 5, 6, 7, 8];
insertSort(x);

}

function insertSort(array) {

var stepCounter = 0;
for (var i = 0; 1 < array.length - 1; i++) {
var j =1 + 1;
var tmp = array[j];
while (j > 0 && tmp > array[j - 1]) {
printStepIns(array, stepCounter++);

array[j] = array[]j - 1];
j--s
array[j] = tmp;

GMLWiki - http://wiki.gml.cz/

Last update: 24. 04. 2015, 15.37 informatika:maturita:22a http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

printStepIns(array, stepCounter++);

}

function printSteplns(array, step) {

var container = document.getElementById("containerinsert");

container.innerHTML += "Krok " + step + ": "

for (var index = 0; index < array.length; index++) {
container.innerHTML += array[index] + " ";

}

container.innerHTML += "
";

}

</script>

<div id="containerinsert">
</div>
<button onclick="testInsert()">Test me!</button>

</html>
Merge sort

Princip:

1. Dostaneme pole

2. Toto pole si rozdélime na dvé podpole

3. Dokud neni pole rozdéleno na jednoprvkové pole opakuj krok ¢.2

4. Jakmile mame jednoprvkova pole spojime je dohromady tak, aby byly sefazeny

5. Jakmile mdme jenom dvé podmnoziny porovname vzdy jednotlivé prvky mnoziny a vzdy ten
vétsi prfidame do finalniho pole -> postupujeme az mame ve finalnim poli prvky od nejvétsiho
po nejmensi

Slozitost: Slozitost algoritmu O(n * log(n))

o0
—~

ProtoZe to nejsem schopny naprogramovat ukdzku mate zde
Quick sort

Princip:

1. Dostaneme pole

2. Zvolime si jeden prvek pole (pivot) a rozdélime zbytek pole na prvky vétsi nez pivot a na prvky
mensi nez pivot

3. Pivota umistime mezi tyto dvé mnoziny - pivot je na miste, kam by patfil v sefazeném poli

4. Kroky opakujeme, dokud nemame vSechny prvky sefazeny

http://wiki.gml.cz/ Printed on 20. 01. 2026, 16.54

https://www.youtube.com/watch?v=EeQ8pwjQxTM

20. 01. 2026, 16.54 5/6 Tid&ni/Razeni a vyhledévaci algoritmy

Slozitost: SloZitost u quick sortu je hodné zavisla na volbé pivota(resp. pivotl). Pokud je pivot
medianem hodnot mdze byt slozitost O(n * log(n)), pokud vsak je pivot nejvétsim nebo nejmensim
prvkem pole je sloZitost O(n®). Pivota mlzZeme vybrat, jako fixni pozici v tabulce (napf. vzdy posledni
nebo prvni nebo prostredni prvek) nebo, coz se povazuje za idealné&jsi pfipad, se vyberou tfi hodnoty
a z nich se udéla median.

o0
—~

ProtoZe to nejsem schopny naprogramovat ukdzku mate zde
Selection sort

Princip:

1. Dostaneme pole
2. Vyhledame nejvétsi prvek pole a umistime ho doleva
3. Toto opakujeme, dokud nemame sefrazeno

Slozitost: SloZitost je sice u selection sortu vysoka O(n?), ale dobrd je u n&j jeho nizkéd pamétova
narocnost

Ukdazka algoritmu

Vyhledavaci algoritmy

Linedrni hledani (také sekvencni hledani)

Princip: Prochazim vSechny prvky, dokud nenajdu ten hledany.

Slozitost: O(n)
Binarni hledani (téz metoda puleni intervali)

Princip:
1. Pole ve kterém se da pouzit ptleni intervald musi byt sefazeno (v tomto pripadé od nejvétsiho
po nejmensi)
2. Podivam se na prostredni prvek pole

3. Pokud je mUj hledany prvek vétsi opakuji to stejné vpravo, pokud mensi tak vlievo
4. Opakuji dokud nenajdu hledané Cislo

Slozitost: O(log,(n))
Metoda binarniho vyhledavaciho stromu

Princip: Tvorim binarni strom (viz. obrazek) tak, ze vzdy v levé vétvi jsou mensi prvky a v pravé jsou

GMLWiki - http://wiki.gml.cz/

http://www.algoritmy.net/article/10/Quicksort
http://www.algoritmy.net/article/4/Selection-sort

Last update: 24. 04. 2015, 15.37 informatika:maturita:22a http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

vetsi prvky. Hledany prvek hledame tak, ze za nim jdeme po vétvi.

Slozitost: V zavislosti na vyvazeni stromu (= vyvazeny pocet vétvi obou stranach) mdze byt bud
O(log(n)) pro vyazeny strom nebo O(n) pro nevyvazeny.

From:
http://wiki.gml.cz/ - GMLWiki

Permanent link:
http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

Last update: 24. 04. 2015, 15.37

http://wiki.gml.cz/ Printed on 20. 01. 2026, 16.54

http://wiki.gml.cz/_detail/informatika:maturita:22_binarni_strom.jpg?id=informatika%3Amaturita%3A22a
http://wiki.gml.cz/
http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

	Třídění/Řazení a vyhledávací algoritmy
	Třídění vs řazení
	Složitost algoritmů
	Třídící algoritmy
	Bubble sort
	Insert sort
	Merge sort
	Quick sort
	Selection sort

	Vyhledávací algoritmy
	Lineární hledání (také sekvenční hledání)
	Binární hledání (též metoda půlení intervalů)
	Metoda binárního vyhledávacího stromu

