
20. 01. 2026, 16.54 1/6 Třídění/Řazení a vyhledávací algoritmy

GMLWiki - http://wiki.gml.cz/

Třídění/Řazení a vyhledávací algoritmy

Třídění vs řazení

Třídění je uspořádání objektů podle podobných vlastností. Způsob třídění je vždy závislý na oboru,
který s těmito objekty pracuje.

Řazení je způsob uspořádání objektů do specifikovaného pořadí. Řazení může být provozováno podle
různých kritérií (abecedně, vzestupně, sestupně).

Tyto dva pojmy bývají často zaměňovány.

Složitost algoritmů

Složitost algoritmů (někdy taky asymptotická složitost) je funkce, která vyjadřuje počet elementárních
kroků v závislosti na vstupních datech dané funkce. Značí se O.

Možnosti tříd složitostí:

Rozdíl mezi jednotlivými třídami složitosti se dá jednoduše pochopit na těchto dvou příkladech. Když
máme první algoritmus se složitostí O(n) a druhý algoritmus se složitostí O(2n) stačí nám ten druhý
spustit na dvakrát rychlejším stroji a rozdíl je smazán. Pokud však máme první algoritmus se složitostí
O(n) a algoritmus se složitostí O(n2) bude při různé velikosti stoupat náročnost v závislosti na n 10x,
20x,…

Třídící algoritmy

Bubble sort

Princip:

Dostanu zadané pole.1.
Procházím pole, pokud je prvek vlevo menší než prvek vpravo prohodím je2.
Opakuji dokud není pole seřazeno od největšího po nejmenší (zprava doleva)3.

Složitost: O(n2) → za každý prvek pole projdu pole dvakrát

Ukázka algoritmu:

function bubbleSort(array) {
 for (var i = 0; i < array.length - 1; i++) {
 for (var j = 0; j < array.length - 1 - i; j++) {
 if (array[j] < array[j + 1]) {
 var tmp = array[j];

http://wiki.gml.cz/_detail/informatika:maturita:22_slozitost_algoritmu.png?id=informatika%3Amaturita%3A22a

Last update: 24. 04. 2015, 15.37 informatika:maturita:22a http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

http://wiki.gml.cz/ Printed on 20. 01. 2026, 16.54

 array[j] = array[j + 1];
 array[j + 1] = tmp;
 }
 }
 }
}

<html>

<script> function test() {

 var x = [2, 5, 1, 7, 8];

 bubbleSort(x);

}

function bubbleSort(array) {

 for (var i = 0; i < array.length - 1; i++) {
 for (var j = 0; j < array.length - 1 - i; j++) {
 printStep(array, step++);
 if (array[j] < array[j + 1]) {
 var tmp = array[j];
 array[j] = array[j + 1];
 array[j + 1] = tmp;
 }
 }
 }

}

function printStep(array, step) {

 var container = document.getElementById("containerbubble");
 container.innerHTML += "Krok " + step + ": "
 for (var index = 0; index < array.length; index++) {
 container.innerHTML += array[index] + " ";
 }
 container.innerHTML += "
";

}

</script>

 <div id="containerbubble">
 </div>
 <script src="bubblesort.js"></script>

 <button onclick="test()">Spusť mě!</button>

20. 01. 2026, 16.54 3/6 Třídění/Řazení a vyhledávací algoritmy

GMLWiki - http://wiki.gml.cz/

</html>

Insert sort

Princip:

Dostanu pole1.
Procházím pole zleva doprava a vždy každý prvek zařadím na místo podle velikosti2.
Dostávám pole seřazené zleva doprava od největšího po nejmenší3.

Složitost: Složitost je O(n2), ale při téměř seřazeném poli se blíží O(n)

Ukázka algoritmu:

function insertSort(array) {
 var stepCounter = 0;
 for (var i = 0; i < array.length - 1; i++) {
 var j = i + 1;
 var tmp = array[j];
 while (j > 0 && tmp > array[j - 1]) {
 array[j] = array[j - 1];
 j--;
 array[j] = tmp;
 }
 }
}

<html> <script> function testInsert() {

 var x = [1, 5, 6, 7, 8];

 insertSort(x);

}

function insertSort(array) {

 var stepCounter = 0;
 for (var i = 0; i < array.length - 1; i++) {
 var j = i + 1;
 var tmp = array[j];
 while (j > 0 && tmp > array[j - 1]) {
 printStepIns(array, stepCounter++);

 array[j] = array[j - 1];
 j--;
 array[j] = tmp;
 }
 }

Last update: 24. 04. 2015, 15.37 informatika:maturita:22a http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

http://wiki.gml.cz/ Printed on 20. 01. 2026, 16.54

 printStepIns(array, stepCounter++);

}

function printStepIns(array, step) {

 var container = document.getElementById("containerinsert");
 container.innerHTML += "Krok " + step + ": "
 for (var index = 0; index < array.length; index++) {
 container.innerHTML += array[index] + " ";
 }
 container.innerHTML += "
";

}

</script>

 <div id="containerinsert">
 </div>
 <button onclick="testInsert()">Test me!</button>

</html>

Merge sort

Princip:

Dostaneme pole1.
Toto pole si rozdělíme na dvě podpole2.
Dokud není pole rozděleno na jednoprvkové pole opakuj krok č.23.
Jakmile máme jednoprvková pole spojíme je dohromady tak, aby byly seřazeny4.
Jakmile máme jenom dvě podmnožiny porovnáme vždy jednotlivé prvky množiny a vždy ten5.
větší přidáme do finálního pole –> postupujeme až máme ve finálním poli prvky od největšího
po nejmenší

Složitost: Složitost algoritmu O(n * log(n))

Protože to nejsem schopný naprogramovat ukázku máte zde .

Quick sort

Princip:

Dostaneme pole1.
Zvolíme si jeden prvek pole (pivot) a rozdělíme zbytek pole na prvky větší než pivot a na prvky2.
menší než pivot
Pivota umístíme mezi tyto dvě množiny → pivot je na místě, kam by patřil v seřazeném poli3.
Kroky opakujeme, dokud nemáme všechny prvky seřazeny4.

https://www.youtube.com/watch?v=EeQ8pwjQxTM

20. 01. 2026, 16.54 5/6 Třídění/Řazení a vyhledávací algoritmy

GMLWiki - http://wiki.gml.cz/

Složitost: Složitost u quick sortu je hodně závislá na volbě pivota(resp. pivotů). Pokud je pivot
mediánem hodnot může být složitost O(n * log(n)), pokud však je pivot největším nebo nejmenším
prvkem pole je složitost O(n2). Pivota můžeme vybrat, jako fixní pozici v tabulce (např. vždy poslední
nebo první nebo prostřední prvek) nebo, což se považuje za idealnější případ, se vyberou tři hodnoty
a z nich se udělá medián.

Protože to nejsem schopný naprogramovat ukázku máte zde .

Selection sort

Princip:

Dostaneme pole1.
Vyhledáme největší prvek pole a umístíme ho doleva2.
Toto opakujeme, dokud nemáme seřazeno3.

Složitost: Složitost je sice u selection sortu vysoká O(n2), ale dobrá je u něj jeho nízká paměťová
náročnost

Ukázka algoritmu

Vyhledávací algoritmy

Lineární hledání (také sekvenční hledání)

Princip: Procházím všechny prvky, dokud nenajdu ten hledaný.

Složitost: O(n)

Binární hledání (též metoda půlení intervalů)

Princip:

Pole ve kterém se dá použít půlení intervalů musí být seřazeno (v tomto případě od největšího1.
po nejmenší)
Podívám se na prostřední prvek pole2.
Pokud je můj hledaný prvek větší opakuji to stejné vpravo, pokud menší tak vlevo3.
Opakuji dokud nenajdu hledané číslo4.

Složitost: O(log2(n))

Metoda binárního vyhledávacího stromu

Princip: Tvořím binární strom (viz. obrázek) tak, že vždy v levé větvi jsou menší prvky a v pravé jsou

http://www.algoritmy.net/article/10/Quicksort
http://www.algoritmy.net/article/4/Selection-sort

Last update: 24. 04. 2015, 15.37 informatika:maturita:22a http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

http://wiki.gml.cz/ Printed on 20. 01. 2026, 16.54

větší prvky. Hledaný prvek hledáme tak, že za ním jdeme po větvi.

Složitost: V závislosti na vyvážení stromu (= vyvážený počet větví obou stranách) může být buď
O(log(n)) pro vyážený strom nebo O(n) pro nevyvážený.

From:
http://wiki.gml.cz/ - GMLWiki

Permanent link:
http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

Last update: 24. 04. 2015, 15.37

http://wiki.gml.cz/_detail/informatika:maturita:22_binarni_strom.jpg?id=informatika%3Amaturita%3A22a
http://wiki.gml.cz/
http://wiki.gml.cz/informatika:maturita:22a?rev=1429882660

	Třídění/Řazení a vyhledávací algoritmy
	Třídění vs řazení
	Složitost algoritmů
	Třídící algoritmy
	Bubble sort
	Insert sort
	Merge sort
	Quick sort
	Selection sort

	Vyhledávací algoritmy
	Lineární hledání (také sekvenční hledání)
	Binární hledání (též metoda půlení intervalů)
	Metoda binárního vyhledávacího stromu

