17.01. 2026, 14.03 1/6 Tid&ni/Razeni a vyhledévaci algoritmy

Tridéni/Razeni a vyhledavaci algoritmy

Tridéni vs. razeni
Tridéni je usporadani objektd podle podobnych viastnosti. Zplsob tfidéni je vzdy zavisly na oboru,
ktery s témito objekty pracuje.

Razeni je zplisob uspofadani objektl do specifikovaného pofadi. Razeni mliZze byt provozovéno podle
rlznych kritérii (abecedné, vzestupné, sestupné).

Oba pojmy byvaji ¢asto zaménovany.

Slozitost algoritmu

Slozitost algoritm{ (nékdy taky asymptoticka slozitost) je funkce, kterad vyjadruje pocet elementarnich
krok{ v zavislosti na vstupnich datech dané funkce. Znaci se O.

i o . el " a . p __-'.Iill.__-'inlll__.d'_r__.d'_nlll
Moznosti thid slozitosti: 1 << l0g(n) < n < nlog(n) < n" < k" < nl<n

Rozdil mezi jednotlivymi tfidami slozitosti se da jednoduSe pochopit na téchto dvou prikladech. Kdyz
mame prvni algoritmus se slozitosti O(n) a druhy algoritmus se sloZitosti O(2n) staci nam ten druhy
spustit na dvakrat rychlejsim stroji a rozdil je smazan.

Pokud véak méme prvni algoritmus se sloZitosti O(n) a algoritmus se sloZitosti O(n?) bude pfi rlizné
velikosti stoupat narocnost v zavislosti na n, a to nékolikrat.

Radici algoritmy

Bubble sort

Princip:

1. Dostanu pole.
2. Prochdzim pole, pokud najdu prvek, ktery je mensi nez prvek vpravo, prohodim je.
3. Opakuji, dokud neni pole sefazeno od nejvétsiho po nejmensi (zprava doleva).

Slozitost: O(n?)

Ukazka algoritmu:

bubbleSort(array

i i < array.length i
j j array. length i; j
array!j array|j

GMLWiki - http://wiki.gml.cz/

http://wiki.gml.cz/_detail/informatika:maturita:22_slozitost_algoritmu.png?id=informatika%3Amaturita%3A22a

Last update: 28. 05. 2020, 15.10 informatika:maturita:22a http://wiki.gml.cz/informatika:maturita:22a

tmp = array!j
array/j array/j
array!j tmp

<html>

<script> function test() {
var x = [2, 5, 1, 7, 8];
bubbleSort(x);

}

function bubbleSort(array) {

for (var 1 = 0; i < array.length - 1; i++) {
for (var j = 0; j < array.length - 1 - i; j++) {
printStep(array, step++);
if (array[j] < array[j + 1]) {
var tmp = arrayl[j];
array[j] = array[j + 1];
array[j + 1] = tmp;

}

function printStep(array, step) {

var container = document.getElementById("containerbubble");
container.innerHTML += "Krok " + step + ": "
for (var index = 0; index < array.length; index++) {

container.innerHTML += array[index] + " ";
}
container.innerHTML += "
";
}
</script>

<div id="containerbubble">
</div>
<script src="bubblesort.js"></script>

<button onclick="test()">Spust mé!</button>

http://wiki.gml.cz/ Printed on 17. 01. 2026, 14.03

17.01. 2026, 14.03 3/6 Tid&ni/Razeni a vyhledévaci algoritmy

</html>

Insert sort

Princip:
1. Dostanu pole.
2. Prochdzim pole zleva doprava a vzdy kazdy prvek zafadim na misto podle jeho velikosti.
3. Dostavam pole serfazené zleva doprava (od nejvétsiho po nejmensi).

Slozitost: SloZitost je O(n%), ale pfi téméf sefazeném poli se blizi O(n).

Ukazka algoritmu:

insertSort(array

stepCounter
i i array. length i
j i
tmp array/ j
while (] tmp array/j
array/j array/j
]

array!j tmp

<html> <script> function testinsert() {
var x = [1, 5, 6, 7, 8];
insertSort(x);

}

function insertSort(array) {

var stepCounter = 0;
for (var i = 0; 1 < array.length - 1; i++) {
var j =1 + 1;
var tmp = array[j];
while (j > 0 && tmp > array[j - 1]) {
printStepIns(array, stepCounter++);

array[j] = array[]j - 1];
j--s
array[j] = tmp;

GMLWiki - http://wiki.gml.cz/

Last update: 28. 05. 2020, 15.10 informatika:maturita:22a http://wiki.gml.cz/informatika:maturita:22a

printStepIns(array, stepCounter++);

}

function printSteplns(array, step) {

var container = document.getElementById("containerinsert");
container.innerHTML += "Krok " + step + ": "
for (var index = 0; index < array.length; index++) {

container.innerHTML += array[index] + " ";

}

container.innerHTML += "
";
}
</script>

<div id="containerinsert">

</div>

<button onclick="testInsert()">Test me!</button>
</html>
Merge sort

https://www.algoritmy.net/article/13/Merge-sort
Princip:

. Dostaneme pole.

. Pole rozdélime na dvé zhruba stejné velka podpole.

. Ziskané podpole dale délime az na jednoprvkové pole (ziskame n jednoprvkovych poli).

. Jakmile mdme jednoprvkova pole spojujeme je dohromady tak, aby byly sefazeny.

. Jakmile mame jenom dvé podmnoziny, porovname vzdy jednotlivé prvky mnoziny a vzdy ten
vétsi pfidame do finalniho pole —» postupujeme az mame ve finalnim poli prvky od nejvétsiho po
nejmensi.

u b~ WN K

Slozitost: O(n * log(n))

Ukéazka zde.

Quick sort

Princip:

1. Dostaneme pole.

2. Zvolime si jeden prvek pole (pivot) a rozdélime zbytek pole na prvky vétsi nez pivot a na prvky
mensi nez pivot (stejné velké prvky mohou byt na libovolné strané).

3. Pivota umistime mezi tyto dvé mnoziny (pivot je na miste, kam by patfil v sefazeném poli).

http://wiki.gml.cz/ Printed on 17. 01. 2026, 14.03

https://www.algoritmy.net/article/13/Merge-sort
https://www.youtube.com/watch?v=EeQ8pwjQxTM

17.01. 2026, 14.03 5/6 Tid&ni/Razeni a vyhledévaci algoritmy

4. Kroky opakujeme, dokud nemame vSechny prvky sefazeny.

Slozitost: SloZitost u quick sortu je hodné zavisla na volbé pivota (resp. pivotd). Pokud je pivot
medianem hodnot, miZe byt sloZitost az O(n * log(n)), pokud je vSak pivot nejvétsim nebo nejmensim
prvkem pole je sloZitost O(n®). Pivota mlizeme vybrat jako fixni pozici v tabulce (nap¥. vzdy posledni,
prvni nebo prostredni prvek) nebo, coz se povazuje za idealni pfipad, se vyberou tfi hodnoty pole, ze
kterych se udéla median.

Ukéazka zde.
Selection sort

Princip:

1. Dostaneme pole.
2. Vyhledame nejvétsi prvek pole a umistime ho doleva.
3. Toto opakujeme, dokud nemame serazeno.

Slozitost: SloZitost je sice u selection sortu vysokd O(n®), ale mé velmi nizkou pamétovou naro¢nost.

Ukdazka algoritmu

Vyhledavaci algoritmy

Linedrni hledani (sekvencni hledani)

Princip: Prochazime vSechny prvky, dokud nenajdu ten hledany.

Slozitost: O(n)
Binarni hledani (metoda puleni intervali)

Princip:

1. Pole ve kterém se da pouzit ptleni intervall, musi byt serazeno (v tomto pripadé od nejvétsiho
po nejmensi).

2. Podivam se na prostfedni prvek pole.

3. Pokud je mUj hledany prvek vétsi opakuji to stejné vpravo, pokud mensi tak vievo.

4. Opakuji, dokud nenajdu hledany prvek.

Slozitost: O(log,(n))
Metoda binarniho vyhledavaciho stromu

Princip: Tvorim binarni strom (viz obrazek) tak, ze vzdy v levé vétvi jsou mensi prvky a v pravé jsou
vetsi prvky. Hledany prvek hledame tak, Zze za nim jdeme po vétvi.

GMLWiki - http://wiki.gml.cz/

http://www.algoritmy.net/article/10/Quicksort
http://www.algoritmy.net/article/4/Selection-sort

Last update: 28. 05. 2020, 15.10 informatika:maturita:22a http://wiki.gml.cz/informatika:maturita:22a

SloZitost: V zavislosti na vyvazeni stromu (podle vyvazeného poctu vétvi na obou stranach) mize
byt bud O(log(n)) pro naprosto vyvazeny strom, nebo az O(n) pro vibec nevyvazeny strom.

From:
http://wiki.gml.cz/ - GMLWiki

Permanent link:
http://wiki.gml.cz/informatika:maturita:22a

Last update: 28. 05. 2020, 15.10

http://wiki.gml.cz/ Printed on 17. 01. 2026, 14.03

http://wiki.gml.cz/_detail/informatika:maturita:22_binarni_strom.jpg?id=informatika%3Amaturita%3A22a
http://wiki.gml.cz/
http://wiki.gml.cz/informatika:maturita:22a

	Třídění/Řazení a vyhledávací algoritmy
	Třídění vs. řazení
	Složitost algoritmů
	Řadicí algoritmy
	Bubble sort
	Insert sort
	Merge sort
	Quick sort
	Selection sort

	Vyhledávací algoritmy
	Lineární hledání (sekvenční hledání)
	Binární hledání (metoda půlení intervalů)
	Metoda binárního vyhledávacího stromu

