
15. 01. 2026, 04.07 1/3 Principy objektově orientovaného programování

GMLWiki - http://wiki.gml.cz/

Principy objektově orientovaného
programování

Vztah k ostatním paradigmatům

Na rozdíl od imperativního a strukturovaného programování je výkonný kód objektově orientovaného
programování obsažen v rámci objektů. To znamená, že konkrétní hodnoty jsou uloženy jako atributy
těchto objektů. Zpracování atributů spolu s celkovou komunikací s objekty probíhá pomocí kódu, který
je obsažený v metodách objektů. Navenek pak program působí jako několik navzájem spolupracujících
objektů, což umožňuje snadnější přenos kódu mezi různými projekty a jednodušší úpravu již
existujícího kódu pomocí dědičnosti. Další výhodou je také větší zabezpečení dat díky viditelnosti
atributů.

Nevýhodou objektově orientovaného programování je jeho větší náročnost na paměť a výpočetní
rychlost, proto se používá hlavně u moderních počítačů, kde jsou tyto nevýhody téměř neznatelné. U
mikropočítačů a jednoduchých jednoúčelových strojů je však výhodnější použití strukturovaného
programování.

Zapouzdření

Zapouzdření může být chápáno jako zabalení dat a metod do jednoho objektu. Tento proces váže
data s metodami, které s těmito daty pracují, čímž umožňuje základní funkce OOP. Další funkcí
zapouzdření je znepřístupnění dat a metod na základě jejich viditelnosti.

Dědičnost

Dědičnost umožňuje tvorbu nových tříd podle již vytvořených tříd. Tyto odvozené třídy pak obsahují
všechny atributy a metody rodičovských tříd. Odvozené třídy si mohou tyto data různě upravovat
nebo přidávat další.

např:

class Zpevak extends Clovek {

zpivej{};

tancuj{}; }

V tomto příkladu jsme vytvořili novou třídu Zpevak, která je odvozena od třídy Clovek. Objekt třídy
Zpevak tedy může využívat všechny atributy a metody třídy Clovek (např. metoda vstan() a atribut
barvaOci) a zároveň nově vytvořené metody zpivej() a tancuj().



Last update: 25. 02. 2018, 22.53 informatika:maturita:19a http://wiki.gml.cz/informatika:maturita:19a

http://wiki.gml.cz/ Printed on 15. 01. 2026, 04.07

Vícenásobná dědičnost

Počet rodičovských tříd je určen použitým programovacím jazykem (např. Java umožňuje pouze jednu
rodičovskou třídu, C++ umožňuje více).

Polymorfismus

Umožňuje použít jednotné rozhraní pro práci s různými typy objektů např:

instance třídy mladyClovek bude metodu presunSe(); vykonávat za pomocí metody chod, ale instance
třídy staryClovek bude tu samou metodu presunSe(); vykonávat za pomocí chodOHoli

To znamená, že i když každý objekt tuto metodu vykonává jinak, z vnějšího hlediska se tváří stejně a
my nemusíme tedy přemýšlet, jak přesně toho u různých objektů docílit.

Pod pojmem polymorfismus můžeme také rozumět Přetěžování metod - to znamená že metoda
může fungovat více různými způsoby, které se rozliší podle druhu a počtu parametrů. Např metoda
rekni(string vyrok); umožní objektu clovek říct nějaký výrok jen tak do prázdna, zatímco metoda
rekni(string vyrok; clovek prijemce; zpusobHlasitosti hlasitost) umožní tomu samému objektu říct
výrok konkrétnímu příjemci a zvolenou hlasitostí.

V některých programovacích jazycích umožňuje polymorfismus metodám také různé zpracování
parametrů různého typu.

Viditelnost atributů a metod

Nastavením viditelnosti dat můžeme určit, které části programu budou mít k těmto datům přístup.
Nastavit můžeme tři základní možnosti.

private - data jsou viditelná pouze pro konkrétní objekt
public - data jsou viditelná komukoli
protected - data jsou viditelná pouze pro konkrétní třídu a odvozené třídy

Rozhraní

Zjistíme, že programátor umí psát na počítači a účetní také. Intuitivně cítíme, že nebudou mít mnoho
dalších společných schopností a navíc tuto dovednost může mít napříč povoláními leckdo, proto nemá
smysl tvořit třídu na způsob ČlovekPracujícíSPočítačem a od ní dědit Programátora a Účetní, ale je
výhodnější například vytvořit rozhraní SchopenPsátNaPočítači s požadavkem na metodu
napišNaPočítači() a upravit třídy Programátor a Účetní tak, aby toto rozhraní implementovaly, tedy
předepsanou metodu, a to každý po svém. V definici rozhraní nemůže být obsažen kód
(implementace) dané metody, ale všechny třídy, které toto rozhraní implementují, musí být schopny
se s příkazem napišNaPočítači() nějak vypořádat.

Obdobně může abstraktní třída předepisovat doimplementování metod, pro které ona sama nemá
vlastní kód, ale jen předpis abstraktní metody.



15. 01. 2026, 04.07 3/3 Principy objektově orientovaného programování

GMLWiki - http://wiki.gml.cz/

From:
http://wiki.gml.cz/ - GMLWiki

Permanent link:
http://wiki.gml.cz/informatika:maturita:19a

Last update: 25. 02. 2018, 22.53

http://wiki.gml.cz/
http://wiki.gml.cz/informatika:maturita:19a

	Principy objektově orientovaného programování
	Vztah k ostatním paradigmatům
	Zapouzdření
	Dědičnost
	Vícenásobná dědičnost

	Polymorfismus
	Viditelnost atributů a metod
	Rozhraní


